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Software Metrics Overview 
Measurement plays a critical rle in effective and efficient software development, as well as 
provides the scientific basis for software engineering that makes it a true engineering 
discipline. This course describes the software quality engineering metrics and models: 
quality planning, process improvement and quality control, inprocess quality management, 
product-engineering (design and code complexity), reliability estimation and projection, 
and analysis of customer satisfaction data. 
We will cover in-process metrics for software testing, object-oriented metrics, availability 
metrics, in-process quality assessment, software project assessment, process 
improvement dos and don'ts, and measuring software process improvement. 
The SW metrics are intended for use by software quality professionals; software project 
managers; software product managers; software development managers; software 
engineers; software product assurance personnel; and students in software engineering, 
management information systems, systems engineering, and quality engineering and 
management. 
The course provides practical guidelines in the practice of quality engineering in software 
development. Although equations and formulas are involved, the focus is on the 
understanding and applications of the metrics and models rather than mathematical 
derivations. 
 
software metric is a standard of measure of a degree to which a software system or 
process possesses some property. Even if a metric is not a measurement (metrics are 
functions, while measurements are the numbers obtained by the application of metrics), 
often the two terms are used as synonymous. Since quantitative measurements are 
essential in all sciences, there is a continuous effort by computer science practitioners and 
theoreticians to bring similar approaches to software development. The goal is obtaining 
objective, reproducible and quantifiable measurements, which may have numerous 
valuable applications in schedule and budget planning, cost estimation, quality assurance 
testing, software debugging, software performance optimization, and optimal personnel 
task assignments. 

Acceptance and public opinion 

Some software development practitioners point out that simplistic measurements can 

cause more harm than good. Others have noted that metrics have become an integral part 

of the software development process. Impact of measurement on programmers 

psychology have raised concerns for harmful effects to performance due to stress, 

performance anxiety, and attempts to cheat the metrics, while others find it to have positive 

impact on developers value towards their own work, and prevent them being undervalued. 

Some argue that the definition of many measurement methodologies are imprecise, and 

consequently it is often unclear how tools for computing them arrive at a particular result, 

while others argue that imperfect quantification is better than none (“You can’t control what 

you can't measure.”). Evidence shows that software metrics are being widely used by 

government agencies, the US military, NASA, IT consultants, academic institutions, and 

commercial and academic development estimation software. 

https://en.wikipedia.org/wiki/Comparison_of_development_estimation_software
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Formally, we define measurement as a mapping from the empirical world to the formal, 
relational world. Consequently, a measure is the number or symbol assigned to an entity 
by this mapping in order to characterize an attribute. 
 
Software metrics can be classified into three categories: 

 product metrics, 
 process metrics  and 
 project metrics. 

Product metrics describe the characteristics of the product such as size, complexity, 
design features, performance, and quality level. 
Process metrics can be used to improve software development and maintenance. 
Examples include the effectiveness of defect removal during development, the pattern of 
testing defect arrival, and the response time of the fix process. 
Project metrics describe the project characteristics and execution. Examples include the 
number of software developers, the staffing pattern over the life cycle of the software, cost, 
schedule, and productivity. Some metrics belong to multiple categories. For example, the 
inprocess quality metrics of a project are both process metrics and project metrics. 
Software quality metrics are a subset of software metrics that focus on the quality 
aspects of the product, process, and project. In general, software quality metrics are more 
closely associated with process and product metrics than with project metrics. 
Nonetheless, the project parameters such as the number of developers and their skill 
levels, the schedule, the size, and the organization structure certainly affect the quality of 
the product. Software quality metrics can be divided further into end-product quality 
metrics and in-process quality metrics. The essence of software quality engineering is to 
investigate the relationships among in-process metrics, project characteristics, and end-
product quality, and, based on the findings, to engineer improvements in both process and 
product quality. Moreover, we should view quality from the entire software life-cycle 
perspective and, in this regard, we should include metrics that measure the quality level of 
the maintenance process as another category of software quality metrics. 
In this chapter we discuss Management Metrics: 

 Size: Lines of Code (LOC*), Thousand Lines of Code (KLOC) 
 Size: Function points, Feature Points 
 Individual Effort: hours 

 Task Completion Time: hours, days, weeks 

 Project Effort: person-hours 

 Project Duration: months 

 Schedule: earned value 

 Risk Projection: risk description, risk likelihood, risk impact 
Quality of management has long been a concern within the software engineering community. The 

term ‘‘software crisis’’ was coined in the 1960s to refer to problems in developing software on time, 

within budget, and with the properties that the software was usable and actually used. The General 

Accounting Office reported in 1979 that of the government software development projects studied: 

 more than 50% had cost overruns; 

 more than 60% had schedule overruns; 

 more than 45% of the delivered software could not be used; 

 more than 29% of the software contracted for was never delivered; 

 more than 19% of the delivered software had to be reworked 

Since that report was released, the software engineering community has attempted to improve the 

software development process. 
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The quality of software development management tools has improved over the past 40 years. 

However,many of the same challenges, such as keeping software development projects on schedule 

and within budget, remain today. The Standish Group report 1995 found that, on average, 

approximately 16% of software projects were completed on time and within budget. In large 

companies the record was even worse: only 9% of the projects were completed on time and within 

budget. Moreover, the projects that were completed contained only approximately 42% of the 

originally proposed features and functions. The Center for Project Management in San Ramon, CA 

reported that 99% of commercial software products are not completed on time, within budget, or 

according to specifications, and that the average project is underestimated by 285%. 

Capability maturity model (CMM) level-four compliance requires the development organization to 

collect metrics that measure the effectiveness of the development process, while CMM level five 

requires that the organization use the metrics continuously to improve its development process. 

IEEE Standard 12207.0 include metrics that might be gathered during the software development 

process. Examples include software size and complexity, software units developed over time, 

milestone performance, and problem/change report status. Metrics are defined for the software 

development process and the software product but not for the quality of the project management. 

One can argue that in order to systematically go about improving the management of software 

projects, it is necessary to measure the quality of project management. Program-management tools 

have been developed to assist the program manager in estimating the cost and schedule of software 

programs. However, the estimation tools available assume consistent and high-quality program 

management. One of the earliest and most widely used software project cost-estimation models is 

COCOMO. The basic, intermediate, and detailed COCOMO models are based on the results of 

analyzing 63 software projects and applying regression analysis in order to predict software 

development cost as a function of software size and other factors. The intermediate and detailed 

COCOMO models take into account attributes of the software product, computer hardware, 

development personnel, and the project. Examples of project attributes include the use of software 

tools and the required development schedule. Intermediate cost estimates are based on the 

estimated number of lines of code (LOC) to be developed and then these estimates are adjusted by 

applying multipliers determined by rating the project with respect to the attributes. For example, a 

project completed under an accelerated schedule is estimated to cost more. However, COCOMO 

does not take into account the quality of project management.‘‘ 

Poor management can increase software costs more rapidly than any other factor and despite 

this cost variation COCOMO does not include a factor for management’s quality, but instead 

provides estimates which assume that the project will be well managed. 

If the quality of the software program management were measurable and available as input to 

costing and scheduling tools, the resulting estimates could pin-point areas of software program 

management in which improvement needs to be made. Being able to measure the quality of 

management of software projects objectively allows development of more accurate cost models and 

would also provide a means for improving software project management through assessment, 

feedback, and correction. In this lecture, we introduce such a metric that is repeatable, termed the 

quality management metric (QMM). We also discuss the informal and more formal validation of 

the metric. The QMM is computed from the quantitative answers to a structured set of inquiries, in 

a questionnaire consisting of two parts: 

(1) a set of paired choices between statements that reflected possible management actions on a 

software program, and 

(2) a set of questions requiring a yes, no, or not applicable answer. 

The questionnaire was designed to eliminate essay-type answers and to minimize, as much as 

possible, subjective assessments. The questionnaire addresses four areas of software management 

considered to be the most important: 

 requirements management, 
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 people management, 

 risk management, 

 and planning/estimation management. 

We assume that, collectively, measures in the four areas can give an objective view of the quality of 

software management for a specific software development program. Thus, two programs scoring 

equally on product and process metrics can be further measured and compared on the basis of the 

quality of their management, thereby providing a more comprehensive look at a software program. 

Estimations are the basis from which planning is performed on a program.  Planning a software 

product development requires a frame of reference and an ability to measure against it. The program 

manager has three major measures with which to estimate the program: products, processes, and 

resources. 

Product measures generally refer to volume, such as LOC. The measure can be the whole product or 

various elements, such as modules, components, or manuals. Measurement is accomplished by 

phase, such as the amount of code produced in the implementation phase or the LOC changed 

during unit testing. Measures of other product attributes might include system throughput, 

cyclomatic complexity, module coupling, and function points (FP). Process measures quantify 

behavior, strategies, and execution of the process used to develop the product. One general category 

of process measures is event counts, such as the number of defects found in test, requirement 

changes, or milestones met. Another general category concerns time measures, such as cycle time: 

time to complete a project. In highly competitive markets, cycle time, or deployment, may be more 

important than reducing development costs. 

 

In procedural programming, quality is measured by: 
  defects per thousand LOC (KLOC), 
 defects per function point, 
  mean time to failure, 
 and many other metrics and models. 

 
Source lines of code (SLOC), also known as lines of code (LOC), is a software metric 
used to measure the size of a computer program by counting the number of lines in the 
text of the program's source code. SLOC is typically used to predict the amount of effort 
that will be required to develop a program, as well as to estimate programming productivity 
or maintainability once the software is produced. 
Consider this snippet of C code as an example of the ambiguity encountered when 

determining SLOC: 

for (i = 0; i < 100; i++) printf("hello"); /* How many lines of code is this? */ 

In this example we have: 

 1 Physical Line of Code (LOC) 

 2 Logical Lines of Code (LLOC) (for statement and printf statement) 

 1 comment line 

Depending on the programmer and coding standards, the above "line of code" could be 

written on many separate lines: 

/* Now how many lines of code is this? */ 

for (i = 0; i < 100; i++) 

{ 

    printf("hello"); 

https://en.wikipedia.org/wiki/Software_metric
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/Printf
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} 

In this example we have: 

 5 Physical Lines of Code (LOC): is placing braces work to be estimated? 

 2 Logical Lines of Code (LLOC): what about all the work writing non-statement 

lines? 

 1 comment line: tools must account for all code and comments regardless of 

comment placement. 

Even the "logical" and "physical" SLOC values can have a large number of varying 

definitions. Robert E. Park (while at the Software Engineering Institute) and others 

developed a framework for defining SLOC values, to enable people to carefully explain 

and define the SLOC measure used in a project. For example, most software systems 

reuse code, and determining which (if any) reused code to include is important when 

reporting a measure. 

Origins 

At the time that people began using SLOC as a metric, the most commonly used 

languages, such as FORTRAN and assembler, were line-oriented languages. These 

languages were developed at the time when punched cards were the main form of data 

entry for programming. One punched card usually represented one line of code. It was one 

discrete object that was easily counted. It was the visible output of the programmer so it 

made sense to managers to count lines of code as a measurement of a programmer's 

productivity, even referring to such as "card images". Today, the most commonly used 

computer languages allow a lot more leeway for formatting. Text lines are no longer limited 

to 80 or 96 columns, and one line of text no longer necessarily corresponds to one line of 

code. 

Usage of SLOC measures 

LOC measures are somewhat controversial, particularly in the way that they are 
sometimes misused. Experiments have repeatedly confirmed that effort is highly correlated 
with SLOC, that is, programs with larger SLOC values take more time to develop. Thus, 
SLOC can be very effective in estimating effort. However, functionality is less well 
correlated with SLOC: skilled developers may be able to develop the same functionality 
with far less code, so one program with fewer SLOC may exhibit more functionality than 
another similar program. In particular, SLOC is a poor productivity measure of individuals, 
since a developer can develop only a few lines and yet be far more productive in terms of 
functionality than a developer who ends up creating more lines (and generally spending 
more effort). Good developers may merge multiple code modules into a single module, 
improving the system yet appearing to have negative productivity because they remove 
code. Also, especially skilled developers tend to be assigned the most difficult tasks, and 
thus may sometimes appear less "productive" than other developers on a task by this 
measure. Furthermore, inexperienced developers often resort to code duplication, which is 
highly discouraged as it is more bug-prone and costly to maintain, but it results in higher 
SLOC. SLOC is particularly ineffective at comparing programs written in different 

https://en.wikipedia.org/wiki/FORTRAN
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Punched_cards
https://en.wikipedia.org/wiki/Card_image
https://en.wikipedia.org/wiki/Duplicate_code
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languages unless adjustment factors are applied to normalize languages. Various 
computer languages balance brevity and clarity in different ways; as an extreme example, 
most assembly languages would require hundreds of lines of code to perform the same 
task as a few characters in APL. The following example shows a comparison of a "hello 
world" program written in C, and the same program written in COBOL - a language known 
for being particularly verbose. 

C COBOL 

# include <stdio.h> 

 

int main() { 

    printf("\nHello world\n"); 

} 

000100 IDENTIFICATION DIVISION. 

000200 PROGRAM-ID. HELLOWORLD. 

000300 

000400* 

000500 ENVIRONMENT DIVISION. 

000600 CONFIGURATION SECTION. 

000700 SOURCE-COMPUTER. RM-COBOL. 

000800 OBJECT-COMPUTER. RM-COBOL. 

000900 

001000 DATA DIVISION. 

001100 FILE SECTION. 

001200 

100000 PROCEDURE DIVISION. 

100100 

100200 MAIN-LOGIC SECTION. 

100300 BEGIN. 

100400     DISPLAY " " LINE 1 POSITION 1 ERASE EOS. 

100500     DISPLAY "Hello world!" LINE 15 POSITION 10. 

100600     STOP RUN. 

100700 MAIN-LOGIC-EXIT. 

100800     EXIT. 

Lines of code: 4 

(excluding whitespace) 

Lines of code: 17 

(excluding whitespace) 

 

Another increasingly common problem in comparing SLOC metrics is the difference 

between auto-generated and hand-written code. Modern software tools often have the 

capability to auto-generate enormous amounts of code with a few clicks of a mouse. For 

instance, graphical user interface builders automatically generate all the source code for a 

graphical control elements simply by dragging an icon onto a workspace. The work 

involved in creating this code cannot reasonably be compared to the work necessary to 

write a device driver, for instance. By the same token, a hand-coded custom GUI class 

could easily be more demanding than a simple device driver; hence the shortcoming of 

this metric. 

There are several cost, schedule, and effort estimation models which use SLOC as an 

input parameter, including the widely used Constructive Cost Model (COCOMO) series of 

models by Barry Boehm et al., PRICE Systems True S and Galorath's SEER-SEM. While 

these models have shown good predictive power, they are only as good as the estimates 

(particularly the SLOC estimates) fed to them. Many have advocated the use of function 

points instead of SLOC as a measure of functionality, but since function points are highly 

https://en.wikipedia.org/wiki/Computer_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/APL_programming_language
https://en.wikipedia.org/wiki/Hello_world_program
https://en.wikipedia.org/wiki/Hello_world_program
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Graphical_user_interface_builder
https://en.wikipedia.org/wiki/Graphical_user_interface_builder
https://en.wikipedia.org/wiki/Graphical_control_element_%28software%29
https://en.wikipedia.org/wiki/COCOMO
https://en.wikipedia.org/wiki/Barry_Boehm
https://en.wikipedia.org/wiki/PRICE_Systems
https://en.wikipedia.org/w/index.php?title=True_S&action=edit&redlink=1
https://en.wikipedia.org/wiki/SEER-SEM
https://en.wikipedia.org/wiki/Function_point
https://en.wikipedia.org/wiki/Function_point
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correlated to SLOC (and cannot be automatically measured) this is not a universally held 

view. 

The corresponding measure for defects per KLOC and defects per function point in OO is 

defects per class. 

With regard to quality management, the OO design and complexity metrics can be used to 

flag the classes with potential problems for special attention. It appears that 

researchers have started focusing on the empirical validation of the proposed metrics and 

relating those metrics to managerial variables. This is certainly the right direction to 

strengthen the practical values of OO metrics. 

Advantages 

1. Scope for Automation of Counting: Since Line of Code is a physical entity; 

manual counting effort can be easily eliminated by automating the counting process. 

Small utilities may be developed for counting the LOC in a program. However, a 

logical code counting utility developed for a specific language cannot be used for 

other languages due to the syntactical and structural differences among languages. 

Physical LOC counters, however, have been produced which count dozens of 

languages. 

2. An Intuitive Metric: Line of Code serves as an intuitive metric for measuring the 

size of software because it can be seen and the effect of it can be visualized. 

Function points are said to be more of an objective metric which cannot be 

imagined as being a physical entity, it exists only in the logical space. This way, 

LOC comes in handy to express the size of software among programmers with low 

levels of experience. 

3. Ubiquitous Measure: LOC measures have been around since the earliest days of 

software. As such, it is arguable that more LOC data is available than any other size 

measure. 

Disadvantages 

1. Lack of Accountability: Lines of code measure suffers from some fundamental 

problems. Some think it isn't useful to measure the productivity of a project using 

only results from the coding phase, which usually accounts for only 30% to 35% of 

the overall effort. 

2. Lack of Cohesion with Functionality: Though experiments have repeatedly 

confirmed that while effort is highly correlated with LOC, functionality is less well 

correlated with LOC. That is, skilled developers may be able to develop the same 

functionality with far less code, so one program with less LOC may exhibit more 

functionality than another similar program. In particular, LOC is a poor productivity 

measure of individuals, because a developer who develops only a few lines may still 

be more productive than a developer creating more lines of code - even more: some 

good refactoring like "extract method" to get rid of redundant code and keep it clean 

will mostly reduce the lines of code. 

https://en.wikipedia.org/wiki/Function_points
https://en.wikipedia.org/wiki/Redundant_code
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3. Adverse Impact on Estimation: Because of the fact presented under point #1, 

estimates based on lines of code can adversely go wrong, in all possibility. 

4. Developer’s Experience: Implementation of a specific logic differs based on the 

level of experience of the developer. Hence, number of lines of code differs from 

person to person. An experienced developer may implement certain functionality in 

fewer lines of code than another developer of relatively less experience does, 

though they use the same language. 

5. Difference in Languages: Consider two applications that provide the same 

functionality (screens, reports, databases). One of the applications is written in C++ 

and the other application written in a language like COBOL. The number of function 

points would be exactly the same, but aspects of the application would be different. 

The lines of code needed to develop the application would certainly not be the 

same. As a consequence, the amount of effort required to develop the application 

would be different (hours per function point). Unlike Lines of Code, the number of 

Function Points will remain constant. 

6. Advent of GUI Tools: With the advent of GUI-based programming languages and 

tools such as Visual Basic, programmers can write relatively little code and achieve 

high levels of functionality. For example, instead of writing a program to create a 

window and draw a button, a user with a GUI tool can use drag-and-drop and other 

mouse operations to place components on a workspace. Code that is automatically 

generated by a GUI tool is not usually taken into consideration when using LOC 

methods of measurement. This results in variation between languages; the same 

task that can be done in a single line of code (or no code at all) in one language 

may require several lines of code in another. 

7. Problems with Multiple Languages: In today’s software scenario, software is often 

developed in more than one language. Very often, a number of languages are 

employed depending on the complexity and requirements. Tracking and reporting of 

productivity and defect rates poses a serious problem in this case since defects 

cannot be attributed to a particular language subsequent to integration of the 

system. Function Point stands out to be the best measure of size in this case. 

8. Lack of Counting Standards: There is no standard definition of what a line of code 

is. Do comments count? Are data declarations included? What happens if a 

statement extends over several lines? – These are the questions that often arise. 

Though organizations like SEI and IEEE have published some guidelines in an 

attempt to standardize counting, it is difficult to put these into practice especially in 

the face of newer and newer languages being introduced every year. 

9. Psychology: A programmer whose productivity is being measured in lines of code 

will have an incentive to write unnecessarily verbose code. The more management 

is focusing on lines of code, the more incentive the programmer has to expand his 

code with unneeded complexity. This is undesirable since increased complexity can 

lead to increased cost of maintenance and increased effort required for bug fixing. 

https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Visual_Basic
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Function point 
A function point is a "unit of measurement" to express the amount of business 
functionality an information system (as a product) provides to a user. Function points are 
used to compute a functional size measurement (FSM) of software. The cost (in dollars or 
hours) of a single unit is calculated from past projects. 
Function points were defined in 1979 in Measuring Application Development Productivity 

by Allan Albrecht at IBM. The functional user requirements of the software are identified 

and each one is categorized into one of five types: outputs, inquiries, inputs, internal files, 

and external interfaces. Once the function is identified and categorized into a type, it is 

then assessed for complexity and assigned a number of function points. Each of these 

functional user requirements maps to an end-user business function, such as a data entry 

for an Input or a user query for an Inquiry. This distinction is important because it tends to 

make the functions measured in function points map easily into user-oriented 

requirements, but it also tends to hide internal functions (e.g. algorithms), which also 

require resources to implement. 

There is currently no ISO recognized FSM Method that includes algorithmic complexity in 

the sizing result. Recently there have been different approaches proposed to deal with this 

perceived weakness, implemented in several commercial software products. The 

variations of the Albrecht-based IFPUG method designed to make up for this (and other 

weaknesses) include: 

 Early and easy function points – Adjusts for problem and data complexity with 

two questions that yield a somewhat subjective complexity measurement; simplifies 

measurement by eliminating the need to count data elements. 

 Engineering function points – Elements (variable names) and operators (e.g., 

arithmetic, equality/inequality, Boolean) are counted. This variation highlights 

computational function. The intent is similar to that of the operator/operand-based 

Halstead complexity measures. 

 Bang measure – Defines a function metric based on twelve primitive (simple) 

counts that affect or show Bang, defined as "the measure of true function to be 

delivered as perceived by the user." Bang measure may be helpful in evaluating a 

software unit's value in terms of how much useful function it provides, although 

there is little evidence in the literature of such application. The use of Bang measure 

could apply when re-engineering (either complete or piecewise) is being 

considered, as discussed in Maintenance of Operational Systems—An Overview. 

 Feature points – Adds changes to improve applicability to systems with significant 

internal processing (e.g., operating systems, communications systems). This allows 

accounting for functions not readily perceivable by the user, but essential for proper 

operation. 

 Weighted Micro Function Points – One of the newer models (2009) which adjusts 

function points using weights derived from program flow complexity, operand and 

operator vocabulary, object usage, and algorithmic intricacy. 

https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Functional_requirements
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://en.wikipedia.org/wiki/Weighted_Micro_Function_Points
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 Fast Function Points Analysis (FFPA) – A similar system to IFPUG that was 

designed by Gartner as a way of calculating function points at a faster rate to deliver 

higher client benefit. It is presumably much faster than the traditional IFPUG method 

and only roughly 2% less accurate. 

Benefits 

The use of function points in favor of lines of code seek to address several additional 

issues: 

 The risk of "inflation" of the created lines of code, and thus reducing the value of the 

measurement system, if developers are incentivized to be more productive. FP 

advocates refer to this as measuring the size of the solution instead of the size of 

the problem. 

 Lines of Code (LOC) measures reward low level languages because more lines of 

code are needed to deliver a similar amount of functionality to a higher level 

language. 

 LOC measures are not useful during early project phases where estimating the 

number of lines of code that will be delivered is challenging. However, Function 

Points can be derived from requirements and therefore are useful in methods such 

as estimation by proxy. 

Criticism 

Albrecht observed in his research that Function Points were highly correlated to lines of 

code, which has resulted in a questioning of the value of such a measure if a more 

objective measure, namely counting lines of code, is available. In addition, there have 

been multiple attempts to address perceived shortcomings with the measure by 

augmenting the counting regimen. Others have offered solutions to circumvent the 

challenges by developing alternative methods which create a proxy for the amount of 

functionality delivered. 

 

Function Points 
 
Albrecht’s effort estimation method was largely based on the notion of FPs. As their name 
suggests, FPs are intended to measure the amount of functionality in a system as 
described by a specification. We can compute FPs without forcing the specification to 
conform to the prescripts of a particular specification model or technique. 
To compute the number of FPs we first compute an unadjusted function point count (UFC). 
To do this, we determine from some representation of the software the number of “items” 
of the following types: 
•  External inputs: Those items provided by the user that describe distinct 
application-oriented data (such as file names and menu selections). These items do not 
include inquiries, which are counted separately. 

https://en.wikipedia.org/wiki/Gartner
https://en.wikipedia.org/wiki/Source_lines_of_code
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•  External outputs: Those items provided to the user that generate distinct 
application-oriented data (such as reports and messages, rather than the individual 
components of these). 
•  External inquiries: Interactive inputs requiring a response. 
•  External files: Machine-readable interfaces to other systems. 
•  Internal files: Logical master files in the system. 

Counting function points associated with the data. Originally determined by the 
complexity of the data on the following parameters: 

 DET (data element type) - unduplicated unique field data such as customer name - 
1 DET; Address Client (code, country, region, district, city, street, house, building, 
apartment) - 9 DET's 

 RET (record element type) - logical grouping of data, such as address, passport 
number. Estimates of functionality not aligned points depends on the complexity of 
the data, which is determined by the complexity of the matrix. 

 
Counting function points associated with the transaction 
Counting function points associated with the transaction - a fourth step analysis method 
function points. 
Transaction - a closed elementary indivisible process, which is important for the user and 
translates product consistency from one state to another. 
In the method distinguish these types of transactions : 

     EI (external inputs) - external input transactions elementary operation data or 
control information coming into the system from outside. 
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     EO (external outputs) - external outgoing transactions elementary operation to 
generate data or control information that go beyond the system. Suggest some logic 
processing computing or information from one or more ILF. 

     EQ (external inquiries) - External requests elementary operation, which in 
response to an external request retrieves data or control information of ILF or EIF. 

 

EXAMPLE simple spelling checker. 

 

Figure simple spelling checker describes a simple spelling checker. To compute the UFC 
from this description, we can identify the following items: 
•  The two external inputs are: document file-name, personal dictionary-name. 
•  The three external outputs are: misspelled word report, number-of-words-
processed message, number-of-errors-so-far message. 
•  The two external inquiries are: words processed, errors so far. 
•  The two external files are: document file, personal dictionary. 
•  The one internal file is: dictionary. 
Next, each item is assigned a subjective “complexity” rating on a three-point ordinal scale: 
simple, average, or complex. 

 
Illustration 1: simple spelling checker 
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In theory, there are 15 different varieties of items (three levels of complexity for each of the 
five types), so we can compute the UFC by multiplying the number of items in a variety by 
the weight of the variety and summing over all 15: 
 15 
UFC = ∑ ( Number of items of variety i ) × ( weight ) 
 i=1 
If we assume that the complexity for each item is average, then the UFC is 
  

UFC = 4A + 5B + 4C + 10D + 7E = 58 

If instead we learn that the dictionary file and the misspelled word report are considered 
complex, then 
  

UFC = 4A + (5× 2 + 7× 1) + 4C + 10D + 10E = 63 

 

To complete our computation of FPs, we calculate an adjusted function-point count, FP, by 
multiplying UFC by a technical complexity factor, TCF. This factor involves the 14 
contributing factors: 
Components of the Technical Complexity Factor 

 F 1 Reliable backup and recovery 
 F 3 Distributed functions 
 F 5 Heavily used configuration 
 F 7 Operational ease 
 F 9 Complex interface 
 F 11 Reusability 
 F 13 Multiple sites 
 F 2 Data communications 

 F 4 Performance 

 F 6 Online data entry 

 F 8 Online update 

 F 10 Complex processing 

 F 12 Installation ease 

 F 14 Facilitate change 

Each component or subfactor is rated from 0 to 5, where 0 means the subfactor is 
irrelevant, 3 means it is average, and 5 means it is essential to the system being built. 
The following formula combines the 14 ratings into a final technical complexity factor: 
          14 
TCF = 0.65 + 0.01*∑ Fi 
           i = 1 

  

This factor varies from 0.65 (if each F i is set to 0) to 1.35 (if each F i is set to 5). The final 
calculation of FPs multiplies the UFC by the technical complexity factor: 
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FP = UFC × TCF 

 

EXAMPLE 

To continue our FP computation for the spelling checker, we evaluate the technical 
complexity factor. After having read the specification, it seems reasonable to assume that 
F 3 , F 5 , F 9 , F 11 , F 12 , and F 13 are 0, that F 1 , F 2 , F 6 , F 7 , F 8 , and F 14 are 3, 
and that F 4 and F 10 are 5. Thus, we calculate the TCF as 

  

TCF = 0.65 + 0.01(18 + 10) = 0.93 

Since UFC is 63, then  

FP = 63 × 0.93 = 59 

 

FPs can form the basis for an effort estimate. 
EXAMPLE 
Suppose our historical database of project measurements reveals that it takes a developer 
an average of two person-days of effort to implement an FP. Then we may estimate the 
effort needed to complete the spelling checker as 118 days (i.e., 59 FPs multiplied by 2 
days each). 
 
The Common Software Measurement International Consortium (the 
“COSMIC”organization) http://www.cosmicon.com/ 
The latest definition of function point measurement is available from the International 
Function Point User Group (IFPUG). Information is available from http://www.ifpug.org/. 
For a comprehensive review of the background and evolution of function point analysis, 
see the review paper by Christopher Lokan. 
Lokan C.J., Function Points, Advances in Computers, 65, 297–344, 2005. 
A good source for information about the use of COCOMO II object points is the COCOMO 
II website: 
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html 
 
Cost and effort estimation 
Managers provided the original motivation for deriving and using software measures. They 
wanted to be able to predict project costs during earlybphases in the software life cycle. As 
a result, numerous models for software cost and effort estimation have been proposed and 
used. Examples include Boehm’s COCOMO II model (Boehm et al. 2000) and Albrecht’s 
functionpoint model (Albrecht 1979). These and other models often share a common 
approach: effort is expressed as a (predefined) function of one or more variables (such as 
size of the product, capability of the developers, and level of reuse). Size is usually defined 
as (predicted) lines of code or number of function points (which may be derived from the 
product specification). 
 
Function points are a measure of the functionality of a software system. The unadjusted 
function count UFC is derived from counting system inputs, outputs, enquiries, and files. A 
technical complexity factor, F, is then computed for the system, and the function point 
count is FP = UFC*F. 
 
 
The main applications of FPs are: 

http:///www.cosmicon.com/
http:///www.ifpug.org/
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
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a.  Sizing for purposes of effort/cost estimation (provided that you have data about 
previous projects that relates the number of Fps in a system to the actual cost/effort). 
 b. Sizing for purposes of normalization. Thus, FPs are used to compute quality 
density (defects/FP), productivity (person-months/FP), etc. 
   Comparing FPs with LOC: 
a.  Unlike LOC, FPs can be extracted early in software life-cycle (from requirements 
definition or specification) and so can be used in simple cost-estimation models where size 
is the key parameter. 
b.  FPs, being a measure of functionality, are more closely related to utility than LOC. 
c.  FPs are language-independent. 
d.  FPs can be used as a basis for contracts at the requirements phase. 
  However: 
a.  FPs are difficult to compute, and different people may count Fps differently. 
b.  Unlike LOC, FPs cannot be automatically extracted. 
c.  There is some empirical evidence to suggest that FPs are not very good for 
predicting effort. Empirical evidence also suggests that FPs are unnecessarily complex. 
Function points are supposed to measure the amount of functionality in a software 
“product,” where product can mean any document from which the functional specification 
can be extracted: the code itself, the detailed design, or the specification. Function points 
are defined in a language-independent manner, so the number of function points should 
not depend on the particular product representation. Function points are also commonly 
interpreted as a measure of size. 
 Drawbacks: 
i.  The main drawback of function points is the difficulty in computing them. You must 
have at least a very detailed specification. This task is not easily automated or even 
repeatable. Different people will generally arrive at a different FP count for the same 
specification, although the existence of standards helps minimize the variance. 
 ii.  The definition of function points was heavily influenced by the assumption that the 
number should be a good predictor of effort; in this sense, the function point measure is 
trying to capture more than just functionality. Thus, FPs are not very well-defined from the 
measurement theory perspective. 
 iii.  FPs have been shown to be unnecessarily complicated. In particular, the TCF 
appears to add nothing in terms of measuring functionality, nor does it help to improve the 
predictive accuracy when FPs are used for effort prediction. 
 
 
Person-month is politically correct synonym for Man-month. 

It's mean amount of work performed by the average worker in one month. 

So, if: 

 project requires 12 persons-months of development time 

 all team members do only pure development activity (i.e. they are telepaths and 

they don't need to spend time for communication with each other). [note: this is not 

your case. In your case developers spend some time (5%) for communication.] 

than: 

 4 developers will spend 3 months for 12 persons-months project. 
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ProjectScopeInPersonsMonths / NumberOfDevelopers = 

NumberOfRequiredMonthsForProject 

 4 months required for 3 developers to finish 12 persons-months project. 

ProjectScopeInPersonsMonths / NumberOfMonths = 

NumberOfRequiredDevelopersForProject 

task completion time - a measure of the time it takes a user to perform a task (from 

start to finish). This is a typical metric in usability evaluation. Time to completion (TTC) is a 
calculated amount of time required for any particular task to be completed. Completion, is 
defined by the span from conceptualization to fruition (delivery), and is not iterative. Similar 
to the metaphorical use of estimated time of arrival. TTC is commonly used when reporting 
on unmovable dates within a project time line. For example; a developer may report a TTC 
of 28 hours in regards to programming a particular application; although the application 
could perhaps be finished in 20 hours, the full allotted TTC will be fixed at 28 hours. 
 
Earned_value_management 
https://en.wikipedia.org/wiki/Earned_value_management 
 
Risk projection, also called risk estimation, attempts to rate each risk in two ways—the 
likelihood or probability that the risk is real and the consequences of the problems 
associated with the risk, should it occur. The project planner, along with other managers 
and technical staff, performs four risk projection activities: 
(1) establish a scale that reflects the perceived likelihood of a risk, 
(2) delineate the consequences of the risk, 
(3) estimate the impact of the risk on the project and the product, and 
(4) note the overall accuracy of the risk projection so that there will be no 
misunderstandings. 

 
Developing a Risk Table 
 
A risk table provides a project manager with a simple technique for risk projection .A 
project team begins by listing all risks (no matter how remote) in the first column of the 
table. This can be accomplished with the help of the risk item checklists. Each risk is 
categorized in the second column (e.g., PS implies a project size risk, BU implies a 
business risk). The probability of occurrence of each risk is entered in the next column of 
the table. The probability value for each risk can be estimated by team members 
individually. Individual team members are polled in round-robin fashion until their 
assessment of risk probability begins to converge. 
Next, the impact of each risk is assessed. Each risk component is assessed and an impact 
category is determined. The categories for each of the four risk components—
performance, support, cost, and schedule—are averaged to determine an overall impact 
value. 
Once the first four columns of the risk table have been completed, the table is sorted by 
probability and by impact. High-probability, high-impact risks percolate to the top of the 
table, and low-probability risks drop to the bottom. This accomplishes first-order risk 
prioritization. 

https://en.wikipedia.org/wiki/Estimated_time_of_arrival
https://en.wikipedia.org/wiki/Earned_value_management
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The project manager studies the resultant sorted table and defines a cutoff line. The cutoff 
line (drawn horizontally at some point in the table) implies that only risks that lie above the 
line will be given further attention. Risks that fall below the line are re-evaluated to 
accomplish second-order prioritization. Risk impact and probability have a distinct 
influence on management concern. A risk factor that has a high impact but a very low 
probability of occurrence should not absorb a significant amount of management time. 
However, high-impact risks with moderate to high probability and low-impact risks with 
high probability should be carried forward into the risk analysis steps that follow. 
All risks that lie above the cutoff line must be managed. The column labeled RMMM 
contains a pointer into a Risk Mitigation, Monitoring and Management Plan or alternatively, 
a collection of risk information sheets developed for all risks that lie above the cutoff. 
Risk probability can be determined by making individual estimates and then developing a 
single consensus value. Although that approach is workable, more sophisticated 
techniques for determining risk probability have been developed. Risk drivers can be 
assessed on a qualitative probability scale that has the following values: impossible, 
improbable, probable, and frequent. Mathematical probability can then be associated with 
each qualitative value (e.g., a probability of 0.7 to 1.0 implies a highly probable risk). 

 
Assessing Risk Impact 
 
Three factors affect the consequences that are likely if a risk does occur: its nature, its 
scope, and its timing. The nature of the risk indicates the problems that are likely if it 
occurs. For example, a poorly defined external interface to customer hardware (a technical 
risk) will preclude early design and testing and will likely lead to system integration 
problems late in a project. The scope of a risk combines the severity (just how serious is 
it?) with its overall distribution (how much of the project will be affected or how many 
customers are harmed?). Finally, the timing of a risk considers when and for how long the 
impact will be felt. In most cases, a project manager might want the “bad news” to occur as 
soon as possible, but in some cases, the longer the delay, the better. 
Returning once more to the risk analysis approach proposed by the U.S. Air Force, the 
following steps are recommended to determine the overall consequences of a risk: 
1. Determine the average probability of occurrence value for each risk component. 
2. Determine the impact for each component based on the criteria 

3. Complete the risk table and analyze the results as described in the preceding sections. 
The overall risk exposure, RE, is determined using the following relationship: 
RE = P x C 
where P is the probability of occurrence for a risk, and C is the the cost to the project 
should the risk occur. 
For example, assume that the software team defines a project risk in the following manner: 
 
Risk identification. Only 70 percent of the software components scheduled for reuse will, 
in fact, be integrated into the application. The remaining functionality will have to be 
custom developed. 
 
Risk probability. 80% (likely). 
 
Risk impact. 60 reusable software components were planned. If only 70 percent can be 
used, 18 components would have to be developed from scratch (in addition to other 
custom software that has been scheduled for development). Since the average component 
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is 100 LOC and local data indicate that the software engineering cost for each LOC is 
$14.00, the overall cost (impact) to develop the components would be 

18 x 100 x 14 = $25,200. 
 
Risk exposure. RE = 0.80 x 25,200 ~ $20,200. 
Risk exposure can be computed for each risk in the risk table, once an estimate of the cost 
of the risk is made. The total risk exposure for all risks (above the cutoff in the risk table) 
can provide a means for adjusting the final cost estimate for a project. It can also be used 
to predict the probable increase in staff resources required at various points during the 
project schedule. 
The risk projection and analysis techniques are applied iteratively as the software project 
proceeds. The project team should revisit the risk table at regular intervals, re-evaluating 
each risk to determine when new circumstances cause its probability and impact to 
change. As a consequence of this activity, it may be necessary to add new risks to the 
table, remove some risks that are no longer relevant, and change the relative positions of 
still others. 

 
Risk Assessment 
At this point in the risk management process, we have established a set of triplets of the 
form: 
[ri, li, xi] 
 where ri is risk, li is the likelihood (probability) of the risk, and xi is the impact of the 
risk. During risk assessment, we further examine the accuracy of the estimates that were 
made during risk projection, attempt to rank the risks that have been uncovered, and begin 
thinking about ways to control and/or avert risks that are likely to occur. 
For assessment to be useful, a risk referent level must be defined. For most software 
projects, the risk components discussed earlier—performance, cost, support, and 
schedule—also represent risk referent levels. That is, there is a level for performance 
degradation, cost overrun, support difficulty, or schedule slippage (or any combination of 
the four) that will cause the project to be terminated. If a combination of risks create 
problems that cause one or more of these referent levels to be exceeded, work will stop. In 
the context of software risk analysis, a risk referent level has a single point, called the 
referent point or break point, at which the decision to proceed with the project or terminate 
it (problems are just too great) are equally weighted. 
In reality, the referent level can rarely be represented as a smooth line on a graph. In most 
cases it is a region in which there are areas of uncertainty; that is, attempting to predict a 
management decision based on the combination of referent values is often impossible. 
Therefore, during risk assessment, we perform the following steps: 
1. Define the risk referent levels for the project. 
2. Attempt to develop a relationship between each (ri, li, xi) and each of the referent levels. 
3. Predict the set of referent points that define a region of termination, bounded by a curve 
or areas of uncertainty. 
4. Try to predict how compound combinations of risks will affect a referent level. 
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Full BN model for software project risk. 
 Distributed communications and management. Contains variables that capture 

the nature and scale of the distributed aspects of the project and the extent to which 
these are well managed. 

 Requirements and specification. Contains variables relating to the extent to 
which the project is likely to produce accurate and clear requirements and 
specifications. 

 Process quality. Contains variables relating to the quality of the development 
processes used in the project. 

 People quality. Contains variables relating to the quality of people working on the 
project. 

 Functionality delivered. Contains all relevant variables relating to the amount of 
new functionality delivered on the project, including the effort assigned to the 
project. 

 Quality delivered. Contains all relevant variables relating to both the final quality of 
the system delivered and the extent to which it provides user satisfaction (note the 
clear distinction between the two). 

At its heart the model captures the classic trade-offs between: 
•  Quality (where we distinguish and model both user satisfaction—this is the extent 
to which the system meets the user’s true requirements—and quality delivered—this is the 
extent to which the final system works well). 
•  Effort (represented by the average number of people full-time who work on the 
project). 
•  Time (represented by the project duration). 
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•  Functionality (meaning functionality delivered). 
So, for example, if you want a lot of functionality delivered with little effort in a short time 
then you should not expect high quality. If you need high quality then you will have to be 
more flexible on at least one of the other factors (i.e., use more effort, use more time, or 
deliver less functionality). What makes the model so powerful, when compared with 
traditional software cost models, is that we can enter observations anywhere in the model 
to perform not just predictions but also many types of trade-off analysis and risk 
assessment. So we can enter requirements for quality and functionality and let the model 
show us the distributions for effort and time. Alternatively, we can specify the effort and 
time we have available and let the model predict the distributions for quality and 
functionality delivered. Thus, the model can be used like a spreadsheet—we can test the 
effects of different assumptions. 

 

To explain how this works we consider two scenarios called “New” and “Baseline”.Suppose 
the new project is to deliver a system of size 4000 function points (this is around 270 
KLOC of Java, an estimate you can see for the node KLOC by entering the observation 
“java” for the question “language”). In the baseline scenario we enter no observations 
other than the one for functionality. We are going to compare the effect against this 
baseline of entering various observations into the new scenario. We start with the 
observations shown in Illustration Two scenarios in risk table view., that is, the only change 
from the baseline in the new project is to assert that the quality delivered should be 
“perfect.” Running the model produces the results shown in Figure 7.27 for the factors 
process and people quality, project 
duration, and average number of people full time. First, note that the distributions for the 
latter factors have high variances (not unexpected given the minimal data entered) and 
that generally the new scenario will require a bit more effort for a bit longer. However, the 
factor process and people quality (which combines all the process and people factors) 

 
Illustration 2: Two scenarios in risk table view. 
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shows a very big difference from the baseline. The prediction already suggests that it will 
be unlikely (a 14% chance) to deliver the system to the required level of quality unless the 
quality of staff is better than average. 
Suppose, however, that we can only assume process and people quality is “medium.” 
Then the predictions for project duration and effort increase significantly. For example, the 
median value for project duration is up from 31 months in the baseline case to around 54 
months 

(a) Process and people quality, 
(b) project duration (median 31, 39), 
(c) average number of people full time (19, 23).) with full time staff increasing to 33. 

 

 
Illustration 3: Distributions when functionality delivered is set as “perfect” fornew project 

(compared with baseline). (a) Process and people quality, (b) project duration (median 31, 39), (c) 

average number of people full time (19, 23). 
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Now, we withdraw the observation of process and people quality and suppose, as is typical 
in software projects, that we have a hard schedule deadline of 18 months in which to 
complete (i.e., a target that is significantly lower than the one the model predicts). With this 
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observation we get the distributions shown in Figure 7.29 for process and people quality 
and average number of people full time. Now, not only do we need much higher quality 
people, we also need a lot more of them compared with the baseline. But typically, we will 
only have a fixed amount of effort. Suppose, for example that additionally we enter the 
observation that we have only 10 people full-time (so the project is really “under-
resourced” compared with the predictions). Then the resulting distribution for process and 
people quality is shown in Figure 7.30.What we see now is that the probability of the 
overall process and people quality being “very high” (compared to the industry average) is 
0.9966. Put a different way, if there is even a tiny chance that your processes and people 
are NOT among the best in the industry then this project will NOT meet its quality and 
resource constraints. In fact, if we know that the process and people quality is just 
“average” and now remove the observation “perfect” for quality delivered, then Figure 7.31 
shows the likely quality to be delivered; it is very likely to be “abysmal” (with probability 0.69). 
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There have been many non causal models for software defect prediction and software 
resource prediction. Some of these have achieved very good accuracy and they provide 
us with an excellent empirical basis. However, in general these models are typically data-
driven statistical models; they provide us with little insight when it comes to effective risk 
management and assessment. 
What we have shown is that, by incorporating the empirical data with expert judgment, we 
are able to build causal Bayesian network models that enable us to address the kind of 
dynamic decision making that software professionals have to confront as a project 
develops. 
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The BN approach helps to identify, understand, and quantify the complex interrelationships 
(underlying even seemingly simple situations) and can help us make sense of how risks 
emerge, are connected and how we might represent our control and mitigation of them. By 
thinking about the causal relations between events we can investigate alternative 
explanations, weigh up the consequences of our actions and identify unintended or 
(un)desirable side effects. Above all else the BN approach quantifies the uncertainty 
associated with every prediction. 
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We are not suggesting that building a useful BN model from scratch is simple. It requires 
an analytical mindset to decompose the problem into “classes” of event and relationships 
that are granular enough to be meaningful, but not too detailed that they are 
overwhelming. The states of variables need to be carefully defined and probabilities need 
to be assigned that reflect our best knowledge. Fortunately, there are tools that help avoid 
much of the complexity of model building, and once built the tools provide dynamic and 
automated support for decision making. Also, so we have presented some pre-defined 
models that can be tailored for different organizations. 
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FURTHER READING 
 
For an introduction and historical perspective of Bayes theorem and its applications: 
McGrayne S.B., The Theory That Would Not Die, Yale University Press, CT, 2011. 
Simpson E., Bayes at Bletchley Park, Significance, 7(2), 76–80, 2010. 
For a comprehensive and not overtly mathematical overview of Bayesian networks and 
their applications and support, see: 
Fenton N.E. and Neil M., Risk Assessment and Decision Analysis with Bayesian Networks, 
2012, CRC Press, Boca Raton, FL, ISBN: 9781439809105, ISBN 10:1439809100, 2012. 
There are also extensive resources available on the associated website: 
http://www.bayesianrisk.com/. 
To understand the limitations of statistical modeling techniques and their tests of 
significance and p-values, see the following for a devastating critique of their widespread 
abuse across a range of empirical disciplines: 
Ziliak S.T. and McCloskey D.N., The Cult of Statistical Significance: How the Standard 
Error Costs Us Jobs, Justice, and Lives, University of Michigan Press, Ann Arbor, USA, 
2008. 
Mathematically adept readers seeking more in depth understanding of the theoretical 
underpinnings of Bayesian networks and their associated algorithms should consider the 
following books: 
Jensen F.V. and Nielsen T., Bayesian Networks and Decision Graphs, Springer-Verlag Inc, 
New York, 2007. 
Madsen A.L., Bayesian Networks and Influence Diagrams, Springer-Verlag, New York, 
2007. 
Neapolitan R.E., Learning Bayesian Networks, Upper Saddle River Pearson Prentice Hall, 
2004. 
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